
OTI_ FILE COPY

I- AIR WAR COLLEGE

SRESEARCH REPORT
I

ADA, THE NEW DOD WEAPON SYSTEM COMPUTER LANGUAGE
- PANACEA OR CALAMITY

LT COL NICHOLAS J. BABIAK

ODTIC
SELECTED

1989 FES 01 IM

D

__:m '.r__...,,..." '

----- tVE[IFOR ,

AIR UNIVERSITY RL- TRIUrION
UNITED STATES AIR FORCE UIL,.I.uD
MAXWELL AIR FORCE BASE, ALABAMA

DISCLAIMER

This study represents the views of the author and does not necessarily

reflect the official opinion of the Air War College or the Department of the Air

Force. In accordance with Air Force regulation 110-8, it is not copyrighted

but is the property of the United States government.

Loan copies of this document may be obtained through the interlibrary

loan desk of Air University Library, Maxwell Air Force Base, Alabama 36112-

5564 (Telephone: [205] 293-7223 or AUTOVON 875-7223).

%Acession- For
NTIS GRA&I
DTIC TAB
unannounced
justitLOatiO

Distributiton/ __--

Availbi-litY C.odes

Avail and/or
ist special

AIR WAR COLLEGE
AIR UNIVERSITY

ADA, THE NEW DOD WEAPON SYSTEM COMPUTER LANGUAGE
- PANACEA OR CALAMITY

by

Nicholas J. Babiak
Lieutenant Colonel, USAF

A DEFENSE ANALYTICAL STUDY SUBMITTED TO THE FACULTY

IN

FULFILLMENT OF THE CURRICULUM

REQUIREMENT

Advisor: Mr. Robert 0. Dahl

MAXWELL AIR FORCE BASE, ALABAMA

May 1989

//

EXECUTIVE SUMMARY

TITLE: Ada, The New DoD Weapon System Computer Language - Panacea

or Calamity

AUTHOR: Nicholas J. Babiak, Lieutenant Colonel, USAF

The number of computers embedded in DoD weapon systems is esca-

lating at unprecedented rates. Current emphasis has shifted to software as

the preeminent focus for new weapon systems because of software's potential

to increase the capability of the weapon system and the high costs incurred

during development and support phases of a weapon system's life. The prob-

lem in this study was that of determining the extent to which Ada has

achieved its intended purpose of functioning as a standard programming

language for DoD weapon systems. Consequently, this study examined

whether this programming language has corrected the perceived softwarL

problems of past software languages or whether Ada use has repeated the

problems of past computer languages as well as caused newer problems that

nullify achievement of its selection objectives. The~studies hypotheses looks

to Ada's intended purpose and whether Ada can eventually resolve past

software language problems in the areas of cost, reliability, system capability,

maintainability, and weapon selection., The study conclude4 with an assess-

ment that Ada's original intentions have been successful, however the study

falls short of endorsing all of Ada's claims. Recommendations are given to fa-

cilitate a wider acceptance of Ada. -.

iii

BIOGRAPHICAL SKETCH

Lieutenant Colonel Nicholas J. Babiak (M.A. in Business Management,

Central Michigan University; B.S. in Electrical Engineering [Computer

Design] University of Buffalo; post graduate work in computer technology)

has been active in working the many issues of computer technology for

weapon systems. He has recently held the position of Chief, Emerging Tech-

nologies in the Office of the Special Assistant for Reliability and Maintaina-

bility, responsible for increasing Air Force war fighting capability by acceler-

ating new reliability and maintainability (R&M) technologies into develop-

mental and fielded systems. He has held various positions working in re-

search and advanced technologies. He served as Deputy Director of the DoD

Very High Speed Integrated Circuits (VHSIC) Research and Development

program and Principal Advisor, Embedded Computer Resources at the Air

Staff. He is a graduate of Armed Forces Staff College and Squadron Officer's

School. Lieutenant Colonel Babiak is a graduate of the Air War College, class

of 1989.

iv

TABLE OF CONTENTS

CHAPTER PAGE

DISCLAIMER ii

EXECUTIVE SUMMARY iii

BIOGRAPHICAL SKETCH iv

INTRODUCTION 1
The Rise of Digital Electronics and Weapon Systems. 1
Analysis Problem and Purpose 3
Hypotheses 4
Definition of Terms 4
Delimitations of the Study 5
Importance of Software Selection 6

Factors 6
Ada as a Solution to the Software Problem 8

Study Procedures 10

II THE COMPUTER'S IMPACT ON TODAY'S WEAPON
SYSTEMS 11

Computer Hardware 11
Computer Software 13
Weapon System Dependency on Software 17

III DEVELOPMENT OF ADA 19
Pre-Ada Software Problem Surfaces 19
The Search For a Common Language 23
Creation of Ada........................ 25
Description of the Ada Language 27
Ada: More Than Just a Language 31

IV THE ADA CONTROVERSY 36
Perceived Benefits of Ada 37
Negative Views of Ada Competence 40

Management 41
Tools . 42
Costs . 43
Technology 44

V CAUSES OF THE ADA CONTROVERSY 47

V

II II I

Why There is a perception That Things Are Not Going
Smoothly 47

Management 47
Tools51
Costs . 51
Technology 52

VI AN INTERPRETATION OF THE FINDINGS54
Management 54
Tools . 58
Costs . 59
Technology 60

VII SUMMARY AND CONCLUSIONS 62
Summary 62
Conclusions 64
Recommendations 65
A Final W ord 66

GLOSSARY 68

BIBLIOGRAPHY 70

vi

CHAPTER ONE

INTRODUCTION

The Rise of Digital Electronics and Weapon Systems

The past few decades have felt the impact of digital electronics in the

form of the computer on virtually every walk of life. Computers have made

possible the seemingly impossible. From such epic achievements as placing a

man on the moon to monitoring anesthesia in hospitals, computers account

for a myriad of everyday conveniences. The world is increasingly becoming

dependent on the computer to solve its problems.

The pace of computer technology has spiralled in just the latter part of

the last decade. About 4000 years ago, civilizations developed sophisticated

numbering systems, but mankind did not dispose of the first computer hard-

ware until an Englishman named Charles Babbage invented his Analytical

Engine to perform a wide range of computational tasks from a sequence of

instructions we now call software.

Recent gains in computer power and versatility stem from a tiny tech-

nological miracle called the microprocessor, scarcely two decades old. With

the advent of the microprocessor, and as a result of seemingly endless ad-

vancements in the development of the integrated circuits, computers now

impact virtually every major weapon system in the U.S. modem military

arsenal.

The utilization of computers in fighter aircraft has increased at a

staggering rate. Through most of the Vietnam War, F-4s contained no digital

computers and no software. With the introduction of the F-16A in 1981, com-

1

puters became commonplace in weapon systems. The early F-16 had seven

computer systems with fifty digital processors and 135,000 lines of software

code. In contrast, the new F-16D has fifteen computer systems with 300

digital processors and 236,000 lines of software code. (9:49)

Computers in fighter aircraft and other weapon systems play a decisive

role in converting aircraft into modem fighting machines. Computers embed-

ded in these fighter aircraft control everything from electronic warfare sys-

tems to flight control systems. How well these computers perform their job

determines the fate of the crew member and the mission, from takeoff

through combat to returning to the home base.

As Dr. Edith Martin, a former Undersecretary for Defense (Research

and Advanced Technology), wrote:

Our potential adversaries, mainly the Soviets, are numerically superior,
technologically sophisticated, well equipped, and prepared. We decided to
base our defense strategy on superior technology rather than match those
adversaries one-for-one in equipment and manpower... almost every defense
system fielded today contains a computer and has software performing
mission-critical functions. The future success of our forces on the battlefield,
should conflict arise, will depend on the maturity of our computer technology
and its applications. (36:3)

With our growing dependency on computers in weapon systems, one

can foresee that these machines will eventually effect our national security.

In a report completed by the Office of the Secretary of Defense in 1982, one

finds the following sobering words: "The military power of the United States

is inextricably tied to the programmable digital computer." It drew the corol-

lary conclusion that softwar . problems "can make our future military sys-

tems fail in ways that could be disastrous for our national security." (9:49)

A few years ago much of the attention in designing and developing the

application of computers in weapon systems were centered on the hardware

2

element (3mputer systems. However, in the recent past, the impact of

software on these systems is drawing much of the attention. It stands to

reason that software actually makes or breaks the capability of the system,

for, without software, the embedded computer would only take up room in the

aircraft and be of no use.

Analysis Problem and Purpose

The number of computers embedded in DoD weapon systems is esca-

lating at unprecedented rates. In weapon systems of the recent past, hard-

ware was the driving force in system capability, cost, selection, reliability,

and maintainability. Currently emphasis shifted to software as the preem-

inent focus for new weapon systems because of software's potential to in-

crease the capability of the weapon system and the high costs incurred during

development and support phases of a weapon system's life. However, Ada is

still a relatively new and controversial programming language. The problem

under consideration in this study is that of determining the extent to which

Ada has achieved its intended purpose of functioning as a standard program-

ming language for the creation of large-scale embedded computer system

programs for DoD weapon systems. Consequently, this study will examine

the development of Ada since its adoption to the present and actual perform-

ance of Ada in use today as well as in developing future programs for weapon

systems to determine whether this programming language has corrected the

perceived software problems of past software languages or whether Ada use

has repeated the problems of past computer languages as well as caused

newer problems that nullify achievement of its selection objectives.

3

Hypotheses

The Department of Defense embarked upon a firm direction to instill

Ada as a cornerstone to solving the "software problem." Since the infusion of

computers into U.S. weapon systems, controlling software costs, software

timeliness, and reliability have been rout with less than desirable results.

Solutions to past software problems have not worked. This study has two

major hypotheses:

HI = Ada has achieved its intended purpose of functioning as a

standard programming language for the creation of large-

scale embedded computer system programs for DoD weapon

systems.

H2 = With the proper degree of software engineering, Ada, used

as a standard computer programing language for weapon

system software development, can eventually resolve past

software language problems in the areas of cost, reliability,

system capability, maintainability, and weapon selection.

Definition of Terms

Due to the number of techni al terms distinctive to a discussion of Ada,

a glossary of such terms has been provided at page 68. However, the follow-

ing terms are important enough to be listed in this section:

* Embedded computer - A computer that is integral to a weapon sys-

4

tem. An example would be the Central Computer on the F-15 weapon sys-

tem. One function of the Central Computer is that it accepts data from vari-

ous sensors on the F-15 (air data computer, radar, etc.), makes the required

computations and displays the situation to the pilot (heads-up display).

e Mainframe - A physically large computer usually capable of handling many

users simultaneously. Before the 1970s, the Mainframe computer was preva-

lent in government and industry.

* PC - Personal computer - A computer small enough and inexpensive enough

to be used in the home.

* Embellish - When used in the context of this paper, it indicates that a

contractor accepts the ".:se of Ada along with Ada's support environment,

Ada's emphasis on software engineering, and Ada's management philoso-

phies.

• Stand alone - A stand alone computer is a computer whose input and out-

put are not dependant on another system. A PC would be considered a stand

alone.

Delimitations of the Study

The major focus of the study is on weapon system development in lieu

of other computer based systems such as personnel, finance, logistics support

data systems, etc. The study effort assumes that the facts, figures, and data

derived from the literature are correct. However, on occasion it was difficult

to separate the empirical data as factual or adjusted with political overtones.

Ada is a DoD mandated software language that is applicable to all services.

Space precludes a detailed examination of Ada's applicability to all services.

Therefore, only examples from the Air Force are provided. Since the author

5

could not talk to everyone using Ada, the study's research was limited to

published literature, personal experiences, and personal contacts.

Importance of Software Selection

Factors

Software plays a major role in current weapon systems. The "smarts"

of smart weapons are provided by software. Software is crucial to intelli-

gence, communications, command, and control. Software enables computer-

ized systems for logistics, personnel, and finance. The chief "military soft-

ware problem" is that we cannot get enough software, soon enough, reliable

enough, and cheap enough to meet the demands of weapon systems designers

and users. Software provides a major component of our war-fighting capabil-

ity; as such, proper software selection is of paramount importance. (33:6)

Software selection factors have been envisioned in a number of ways:

cost, schedule, reliability, and capability. The factor that most affected the

Department of Defense in the past and was most visible was cost.

The cost associated with software can be a two edged sword. On one

hand, it is easier and less costly to modify software than it is to modify hard-

ware, as evidenced by the Air Force's experience on the F-111 program. The

Air Force upgraded the avionics of the F-111 A/E aircraft by altering their

analog computers; the Air Force also upgraded the avionics of the F-111D/F

aircraft to obtain the same new capabilities by altering the software in their

digital computers. The hardware changes cost fifty times as much as the

software changes and took three times as long to complete. In another in-

stance, software changes that improved the accuracy of 550 deployed Minute-

6

man II Intercontinental Balistic Missiles cost "only $4 million, a fraction of

what the corresponding physical [hardware] modification might have cost."

(9:50)

On the other hand software costs rise, and, in many circumstances,

they are hidden until later in the support phases of the system. Projections

indicate that it costs $85 million to develop the software for an F-16D. It

costs another $250 million to maintain that software - rectifying its errors,

keeping it in shape, updating it - over its anticipated operational lifetime.

(9:49)

Looking at the bigger picture, the Department of Defense spends $10

billion a year on software and anticipates the need to triple such spending by

1990. At $3 billion a year, software spending accounts for nearly four percent

of the total Air Force budget and is expected to consume ten percent of the

budget by 1990. (9:46)

Dr. Edward Lieblein, the former director of computer software and

systems in the Office of the Secretary of Defense stated that by 1992:

Costs for developing, evolving, and maintaining defense software will have
grown to become a principal factor in the determination of U.S. defense
capabilities. (39:10)

One must keep in mind that the cost of software is but one selection

factor. It appears that software timeliness and reliability may be even more

critical factors today than the cost of software. Software development cycles

are long relative to the development of hardware, relatively unpredictable,

aiid come at the end of a system's development cycle. Therefore, the develop-

ment of software frequently encounters delays that impact the eventual use

and operational capability of a new weapon system. Additionally software

developments usually encounter design flaws which critically affect the relia-

7

bility of the system's capability. While there are a number of selection factors

for weapon systems software, most eventually bear directly or indirectly on

the cost factor. Clearly a misjudgment of one or all of these selection factors

can cause a software problem that will cause poor or unacceptable weapon

system performance. (33:7)

Throughout the literature search, interviews, and the personal experi-

ence of the author, the preponderance of opinions indicated that the Depart-

ment of Defense perceived that previous software selected for weapons devel-

opment represented a "software problem" which required a corrective solu-

tion.

Ada as a Solution to the Software Problem

The cornerstone of the solution, as envisioned by the Department of

Defense, was a computer programming language standard called Ada. Ada

was a programming language for the programming of computers embedded

within larger systems. Computers internal to aircraft, ships, radars, or

command and control systems are used in different ways than in business or

data processing applications. Computers in such embedded computer sys-

tems typically interface with human operators and external devices in real

time, as events are occurring. They read signals from sensors and send com-

mands to electrical and electromechanical devices. Commercial systems such

as process control and data communications have similar characteristics.

Ironically, even though Ada was designed for embedded systems, the first

Ada software product was a stand alone payroll and inventory system for a

truck manufacturer. (42:1)

8

Ada, as a language for constructing large programs to be used in em-

bedded computer systems, included systems such as aircraft or missiles,

command and control systems, and computer-controlled radars or weapons

that are typically constructed by large teams of programmers, take several

years to develop, and have lifetimes spanning decades. Throughout develop-

ment, the programs are updated, corrected, and modified. Ada was designed

to meet the requirements stated in a language specification that established

the necessary characteristics of a language for the intended purpose of creat-

ing programs for embedded computer systems unlike all previous languages.

(42:vii)

Ada was formally tasked to the services as the Department of Defense

standard programming language by the following: (33:16)

* June 1983, memorandum from Dr. Richard DeLauer, Undersecretary

of Defense (R&E), mandated the use of Ada on all new Department of De-

fense mission-critical computer procurements entering concept definition

after 1 January 1984 or entering full-scale development after 1 July 1984.

* December 1985, Mr. Don Hicks, Undersecretary of Defense (R&E),

reaffirmed the mandate to use Ada.

0 November 1986, Mr. Kasper Weinberger, Secretary of Defense, reaf-

firmed the mandate to use Ada.

* April 1987, DODD 3405.1, "Language Policy," stating that lifecycle

cost is the criterion.

* March 1987, DODD 3405.2, "Ada in Weapon Systems," formalized

the Ada Executive Official and the Waiver Control Officer.

9

Secretary Weinberger stated at a major conference two years ago:

What we need now [in the defense industry] is a vast increase in our compu-
tational capabilities. That's why it's so important we have standards such as
Ada to guide us in that direction. (57:31)

Since Ada was selected as the DoD-wide computer programming lan-

guage for weapon systems computer program development and since Ada has

been employed for a number of years, it is important to critically examine the

extent to which Ada has achieved its intended purpose of functioning as a

standard, sophisticated programming language to create programs for em-

bedded computer systems in DoD's weapon systems.

Study Procedures

The appropriate literature was surveyed, personal experience was

utilized, and interviews held from which relevant data was extracted to form

the basis of this study. Chapter I unravels some of the computer mystery

and establishes a common framework to discuss the subject of Ada. In Chap-

ter III the examination of some historical aspects of Ada development and use

are provided to give a framework for the analysis. Chapter IV examines the

Ada program from two viewpoints. The first part of the chapter discusses the

perceived benefits of the Ada program. The second part summarizes those

issues that have caused negative views of the Ada program. The underlying

causes of the Ada controversy are reviewed in Chapter V. Chapter VI places

the controversy into perspective as it relates to the intended purpose of Ada.

A summarization of the study, the conclusions reached, and some recommen-

dations constitute Chapter VII.

10

CHAPTER TWO

THE COMPUTER'S IMPACT ON

TODAY'S WEAPON SYSTEMS

Computers have infiltrated and revolutionized virtually every aspect of

modern warfare, from surveillance and weapon systems to communications,

navigation, and battle field management. Yet their composition and capabili-

ties are still a mystery to many who wear the uniform. Therefore, the follow-

ing discussion will unravel some of the computer mystery and establish a

common framework to discuss the subject of Ada.

Computer Hardware

In 1945 a Hungarian-born mathematician, John von Neumann, laid

out five key components of the computer. These five components have been

the fundamental structure of digital computers for many years and have

formed the basis of many of our modem day weapon system computers. His

architecture called for a:

* Central arithmetic logic unit - This is the part of a computer process-

ing element that performs arithmetic operations such as addition and logical

operations.

* Central control unit - This is the part of the computer that is used to

orchestrate the operations.

* Memory - There are many types of memories but they all perform the

function of storing the program and data.

* Input unit - The most familiar type of input unit is a keyboard. How-

11

ever many weapon systems may use radar, radio communications, flight

control sensors, or any device that takes information and inputs it for compu-

tational reasons.

0 Output unit - The most familiar type of output is the cathode ray

tube (CRT) such as the ones used on today's personal computers.

THE BASIC FIVE COMPONENTS OF A COMPUTER

OUTPUT

ARITHMETIC"-" e LOGIC UNIT

CENTRAL

CONTROL UNIT

[I[]]J[(JJJ~l[MEMORY

INPUT

These five components were the building blocks that guided the design

of the early mainframes and still guid- many of the computers of today. A

more familiar term today is the central processing unit (CPU), usu-dly consid-

ered the heart of the computer. The CPU is that part of the computer that

interprets and executes the instructions. It contains an arithmetic logic unit,

a control unit, and usually a small amount of memory.

12

Many contemporary computers still use these five basic components.

However, elements of the von Neumann architecture may be combined on one

integrated circuit, thus making delineation of these components difficult.

Many other architectures have arisen since the 1940's, such as vector proces-

sors, parallel processors, etc., but these five elements are still present in one

shape or another in most of our weapon system computers.

The physical apparatus of a computer system is called hardware.

Computer sizes and shapes vary dramatically from one weapon system to

another. The computers that run the War Room of the North American Air

Defense Command are extremely large and fill rooms with equipment. In

contrast, computers on an F-16 may be only about the size of a typical bread

box or may be as small as a finger nail. No matter what the size, shape, or

architecture, all of these computers require software to enable the computer

to perform work.

Computer Software

Since software is the basis for the remainder of this paper, a descrip-

tion of its elements is appropriate. Software, or a computer program, is es-

sentially a set of instructions which describe the functions which the com-

puter is to perform. These instructions are usually stored in the computer's

memory as a sequence of binary codes. Binary codes are a set of numbers

which have the value of a one or a zero and are called "object codes." The

combination of these ones and zeros make up the instructions or data that

the computer uses to perform its function. For a program of any size, the

generation of these codes directly by the programmer is a largely impossible

task. Hence, high-level programming languages are used to express the

13

required functions in a notation which is oriented towards the problem that is

to be solved rather than towards the machine which is to be used. (58:13)

EXAMPLE OF THE DIFFERENCES BETWEEN

OBJECT CODE AND HIGH-LEVEL LANGUAGE

HIGH-LEVEL LANGUAGE OBJECT CODE

REM This illustrates a use of 0010001100011011
REM * the cosine function 0001110000111001
LET RESULT = COS(.75) 0001000111100001
PRINT RESULT 1110011101110000
END 0111011100001110

0111000111

.73168888688738 e Output

OBJECT CODE REPRESENTATIVE

The basic tool in the translation of a high-level programming language

into the corresponding machine code (object code) is performed automatically

by software called a compiler. Once this translation is complete, the final

program can then be executed. (58:14)

In the early days of high-level programming languages - essentially the

period of so-called first-and second-generation hardware - computers ran one

program it a time and the principal tool was the compiler. To use a lan-

guage, a programmer wrote a program, punched it into cards, read the cards

into the computer, then attempted to compile and run the program. If there

were no errors, the program would operate. (23:124)

14

DIFFERENT EXAMPLES OF HIGH-LEVEL PROGRAMMING LANGUAGES

10 SUM = 0.0
20 DO 30 1 = 1,LAST30 SUM : SUM + A(I) Th'is program is

written in FORTRAN
40 AVER = SUM / LAST (formula translator).

The program
*computes a numerical

average.

PRINT-AMOUNT-ON-CH ECK This pro-
MOVE EMPLOYEE-AMOUNT-TO-BE-PAID gram is

TO CHECK-DOLLAR-AND-CENTS-AMOUNT written in
COBOL

MOVE EMPLOYEE-AMOUNT-TO-BE-PAID (common
TO WORK-TOTAL-AMOUNT business

MOVE WORK-DOLLAR-AMOUNT oriented
TO CHECK-DOLLAR-AMOUNT language).

The pro-
gram is part
of a check-
writing pro-
gram.

10 INPUT "What Is your name?";N$

20 PRINT "Hello," ;N$ This program is written in
30 END BASIC (beginners all-purpose

symbolic instruction code).
The program prints out your
name.

VAR
message:string;

BEGIN This program is
message: = 'I am written in Pasdal
a program,'; (named for the
writel n(message); French mathemati-

cian Blaise Pascal).
The program prints
out "I am a program."

15

With the introduction of so-called third-generation hardware, comput-

ers and programs became much more complex. Features such as multipro-

gramming, time sharing, remote job entry, background and foreground pro-

grams executing simultaneously, real-time operations, etc. became common-

place. The need for specialized software - independent program tools - to

organize computer operations and to assist in the development, test, running,

and post deployment support of application programs became a necessity.

These software tools (support software) usually consisted of linkers, editors,

loaders, debuggers, and utility routines. (23:124-125)

Historically, support software was not written by language designers.

Development of support software was usually left to individual programmers

who designed and built special software routines for specific computers as a

result of operational needs. The routines were often developed in an unstruc-

tured manner, long after the language was in use. Thus, the results were not

always good. Software support developed individually for specific user needs

led to duplication of effort and often to "reinventing the wheel." This also led

to software that operated on only one computer and programmers that were

able to program only that computer. (23:125)

Even in today's computer state of the art, a good many support soft-

ware routines are still primarily ad hoc in nature; they are often independ-

ently developed for a particular computer. This leads to dependence on one

type of hardware, one operating system, and programs that cannot easily be

moved from one computer to another without extensive modification, which

in turn results in programming errors, long delays, and high costs. (23:125)

16

Weapon system dependency on software

The evolutional growth of computers impact the capabilities of today's

modern Air Force fighter and bomber aircraft to fly and fight. When airfra-

mes such as the F-111 and F-15 were first introduced, they contained com-

puters that integrated many functions into a central computer avionic archi-

tecture. The F-111 system contained two computers; one was the weapons

computer, the other was dedicated to navigation. Since most of the avionics

were analog, the signals had to be converted to digital in order to communi-

cate with the computers. The F-15 had a main central computer which

talked to the other avionics via a digital "bus." As computers became more

prolific, as on the F-15, computers would talk to other computers and ex-

change information in a federated architecture. Such an integrated avionic

approach is planned for the Advanced Tactical Fighter which employs liter-

ally hundreds of computers.

Its easy to see that computers are here to stay on our airborne weapon

systems. As these computers multiply so will their software. Richard Behel

from TRW's Systems Development Division in Huntsville, Alabama, states:

Over the last 30 years we have seen tremendous growth in hardware capa-
bilities. For the same cost that used to get you an 8-bit microcomputer with
8,000 words of memory, you can now have a 2 [million instructions per
second] MIPS processor and a million words of memory. The problem is that
instead of being faced with writing a couple of thousand lines of code, you're
carrying a million lines of code. The most recent upgrades of the F-15 are
carrying a million lines of code. When you look at the ATF, your carrying 2 or
4 million lines of code. (1:65-66)

Both our fighter and bomber aircraft are increasing their consumption

of software. For example, the B-1A bomber of ten years ago embodied

500,000 lines of software code; this has grown to approximately 1,200,000

17

lines of software code in today's B-lB. (9:46)

Software's impact on mission performance is also growing. Software's

responsibilities have grown from weapons release and navigation and has

moved from controlling the flight characteries of the aircraft to monitoring

and controlling engine performance.

The F-16 Flight Control System is an example of the impact of today's

software on mission performance. The F-16 flight control system is a multi-

redundant, fly-by-wire system controlled by the pilot and managed by the

flight control computers and its ensuing software. The system controls the

flight surfaces and relies on the inputs of the pilot, and then optimizes the

flight path of the aircraft. One of the functions the flight control system is

preventing the overstressing of the aircraft by limiting the "G" forces. It

modifies the aircraft's turning capability according to aircraft weight, configu-

ration, and true airspeed. The system is highly dependent on the reliability

and speed of the software to perform these functions. An error in the soft-

ware can cause mission abortment and a possible fatality. (36:3,4)

Since our aircraft systems will become more dependant on software, a

rational approach to software development and support needs to be pursued.

The Department of Defense places the use of Ada as a cornerstone of this

rational approach which is discussed in the next chapter.

18

CHAPTER THREE

DEVELOPMENT OF ADA

The purpose of this chapter is to give the reader a fundamental under-

standing of the background of the development of Ada. This review is given

to demonstrate the vast amount of work that has gone into the formalization

of the present DoD policy.

Pre-Ada Software Problem Surfaces

In the early 1970's, the high cost of development and support of com-

puter systems fostered a number of studies. These studies revealed that

there was an apparent serious cost problem in the development and support

of DoD computer systems. The studies further revealed that most of the cost

was related to embedded computer systems.

These studies revealed that the DoD spent $3 billion for software in

1973. They concluded that the majority of these costs were not incurred for

ANNUAL DOD SOFTWARE COSTS
S.00%

E Scientific
SDatt Processing

EJ Embedded Cornputers
0 Other & Indirect Support

S6.00%

19

the development of new systems, but rather for supporting and maintaining

existing systems. It was also revealed that over 200 models of computers and

over 450 general-purpose programming languages and dialects were being

used for computer systems. The amount of software (lines of code) was also

growing as time progressed. (42:10)

MANNED AIRCRAFT
....

1 0,000,000
5,000,000

o OB-1B
"0 1,000,000-o ~B-1 AWC
o 500,000

S-3A P-3C

100,000 F-15P3ME-IC0P'3C 9 F11
.S 50,000 F-ill
-j F-1 11 0C-5A

10,000 A-7D/E

5,000

1,000
1960 1970 1980 1990

Year

MANNED SPACE MISSION CONTROL

10,00 0Skyab-2 Space Shuttle
10y00b-0 -L . w(Operational)

,000000- Apollo-7 08 Space Shuttle

5 0 Apolo-17 (Flight Test)Gemini-1U 5 Aoo1

" 1,000,000- Gemini-3*
0o 500,000-

100,000 - ercury-3

_ 50,000-

10,000-
5,000-

Mililes/Launch Vehicles

1,000-
1960 1970 1980 1990

Year

20

MANNED SPACECRAFT

10,000,000-
5,000.000-

* Sec Shuttle
R 1,000.000- (Fliht Test)
cS 500.000- 0

' 00,000- Gemini B @ 0Sya-
51 50,000- * *

:3 0 Appollo-7

1000

5,0001

I iso 960 1 dw 90g

Year

UNMANNED SPACE PROBES

10.000.000-
5,000,000-

1,000.000-
o 500,000

Galileo

*100,000-
50,000-

toVildrng

10.000- oae

1960 1470 Year s 9

MISSILES/LAUNCH VEHICLES

10.000,000-
5,000,000-

1,000,000-

0
Pers"igI

100,000- (Engr 92eJ)

Per
rhng I

ItU
4

Ad ev)
10,000- TIita 1I1c. Trident C-4
5,000- Pershin A~*Pol~ -

Titan 11 04 IsIo ,

1.00 Pershi29 ng I
I i60 19'70 1ski 19W

Year

21

During the 1970's, software for embedded computer applications was

primarily written in assembly language. Software was also being written

using higher-level languages but these programs still contained a high pro-

portion of assembly language. This was done to overcome deficiencies and

accomplish functions not amenable to high-level implementation. Computer

memory and speed were at a premium in those days and the use of assembly

language was the best means to work with real time applications. The lack of

commonalty and use of assembly language made the development of new

software difficult and created an even more serious problem for software

support and maintenance.

SUMMARY OF PROBLEMS WITH THE LACK OF
COMMONALTY AND USE OF ASSEMBLY LANGUAGE

* ORIGINAL DEVELOPMENT COST AND SUPPORT AND
MAINTENANCE COST HIGH

* EXCESSIVE COST FOR DEVELOPING TRANSLATORS AND
SUPPORT TOOLS FOR EACH OF THE LANGUAGES

* EFFECT OF SCHEDULE SLIPPAGE, HIGHER COSTS, AND A LESS
SUITABLE PRODUCT

0 DIFFICULTIES, TIME
LAGS, AND EXCESSIVE
COST TO MAINTAIN THE
SOFTWARE BY OTHER

a THAN THE ORIGINAL
4DEVELOPER

* TIME LAG AND COSTS
ASSOCIATED WITH

LACK OF COMMONALITY ANO RETRAINING OF
USE OF ASSEMBLY LANGUAGE PROGRAMMERS

(42:10-11)

22

The Search for a Common Language

It became evident that something had to be done to curb rising costs

and associated problems of language proliferation. Therefore, the services

began to study the feasibility of a common language. The DoD established

the High-Order Language Working Group (HOLWG) in 1975 to provide a

common framework in which to work this issue. The first job was to define

capabilities and set forth requirements to provide the basis for a new lan-

guage. The HOLWG developed a series of requirements documents:

REQUIREMENTS EVOLUTION

STRAWMAN -. -m m APRIL 1975

VVWODENMAN " AUGUST 1975

TINMAN . JANUARY 1976

IRONMAN - JANUARY 1977

REVISED IRONMAN -'m JULY 1977

STEELMAN JUNE 1978
...--i :ii :!

These documents continued to refine the new language requirements. (42:11)

The document that contained the final set of requirements was entitled

Department of Defense Requirements for High Order Computer Programming

Languages: "Steelman." The refined language requirements in the "Steel-

man" document were then evaluated against a number of existing languages

to see if any were appropriate. In 1976 the following languages were evalu-

ated against the "Steelman:m"

23

* Jovial, SPIA, Tacpol, CMS-2

These languages were in DoD use for existing embedded computer

systems.

* CORAL-66, LIS, Pearl, RTL-2, HAL/S

These languages were used in process control systems.

o Euclid, Moral, ECL, Simula-67

These languages were being used for research.

e COBOL, FORTRAN, Pascal, Algol, PI

These general languages were used in a variety of functions.

After the evaluation was completed, it was determined that none of

these existing languages would fulfill the technical requirements of the

"Steelman" as listed below. The evaluation did conclude, however, that Pas-

cal, PIA, or Algol 68 should form the foundation for the new language.

(42:12)

FUNDAMENTAL TECHNICAL REQUIREMENTS
ESTABLISHED IN THE ORIGINAL "STEELMAN" (42:14-15)

(JM BE SUITABLE FOR EMBEDDED COMPUTER APPLICATIONS
BE APPROPRIATE FOR SOFTWARE FOR LONG-LIVED SYSTEMS

BE SUITABLE AS A COMMON LANGUAGE

NOT IMPOSE EXECUTION COSTS DUE TO UNNEEDED GENERALITY
PROVIDE A BASE FOR DEVELOPMENT, MAINTENANCE, AND SUPPORT
EXEMPLIFY GOOD LANGUAGE DESIGN

From these technical macro-requirements came the eight criteria for

the design of the language.

24

THE "STEELMAN" DOCUMENT ESTABLISHED
EIGHT CRITERIA

FOR THE DESIGN OF THE LANGUAGE. (4 2:14-15)

~iI~l~ *Generality.
Generality of the language should apply to embedded
computer applications.

S Reliability.
The language should aid the design and development
of reliable programs - avoid errors.

ilisI~* Maintainability.
The programs developed should be easily maintained.

iIIII~* Efficiency.
The language should produce efficient object code.

0Simplicity.
The language should not contain unnecessary complexity.

i~~ L plementability.

The language should be understandable and implementable.

, Machine independence.
The language should be transportable to various machine
architectures.

i* Complete definition.
The language should be completely and unambiguously defined.

Creation of Ada

From the beginning of the requirements definition, layed down by the

"Steelman," the DoD released a request for proposal in April 1977. Two years

later the language developed by Cii-Honeywell Bull was ready for review and

intense scrutiny and was coined Ada. In June 1979 the Preliminary Ada

Refei ance Manual was distributed to over 10,000 individuals for evaluation.

The language went through a vigorous evaluation of test program develop-

ment and recommendations for improvement. Over 100 different organiza-

tions participated in this evaluation which lead to over 900 issues raised

25

about the language. After a year of fine tuning, the language Ada was for-

mally "born" on September 4 and 5, 1980. Ada then became a military stan-

dard, MIL-STD-1815, on 10 December 1980, and, in February 1983, it became

an American National Standards Institute standard (ANSI). The DoD com-

mon language was named Ada in honor of the world's first recognized pro-

grammer, Countess Augusta Ada Lovelace. (42:14-15, Axvii)

Countess Augusta Ada Lovelace

Ada has been trademarked since 1981. The DoD trademarked Ada to

prevent compilers that do not conform to the language standard from being

sold as true Ada compilers. To insure full compliance with MIL-STD-1815,

compilers using the Ada trademark must be certified through a formal vali-

d'ation process that it managed by the Ada Joint Program Office (AJPO).

Certificates are issued by the AJPO following satisfactory completion of

testing (over 2500 tests must be passed for each validation). This testing is

done at two Ada Validation Facilities in the United States (one at Wright-

26

Patterson Air Force Base, Ohio, and the second at the General Services Ad-

ministration in Washington, D.C.) or at facilities in France, Germany, or the

United Kingdom. (25:735,40:726)

Description of the Ada language

Ada is a rich, complicated programming language created to address

the complex problems for which it was designed. There are no authorized

subsets of the Ada language. The DoD has decided that no single subset

would have the features required by all users. Ada was designed as an inte-

grated, unified language, and therefore it is difficult to remove features with-

out disturbing the unity of the remainder of the language. (42:viii)

Ada is a large and complex language. One element of Ada's complexity

is its use of advanced and not widely-known features such as packages, tasks,

generics, exceptions, private types, and others.

KEY TECHNICAL FEATURES OF ADA (40:730)

-packages • real-time processing

• strong data typing • exceptions

" generics • overloading

" tasking • separate compilation

* numeric processing • representation clauses

Another element is its use of features common and well-accepted in the Algol

60 and Pascal class of languages but unknown to engineers with largely

FORTRAN backgrounds who traditionally have designed embedded computer

systems with features such as enumeration types, records, pointers, strong

typing, and others. (42:viii)

27

KEY CHARACTERISTICS

SOFTWARE ENGINEERING PRINCIPLES (4 0:7 3 0)

* structured programming

* top-down development

• strong data typing

* abstraction (of data and actions)

* information hiding and encapsulation

* separation of specification from implementation

• reusability

* separation of logical from physical concerns

• portability

* modularity

* readability

* verifiability

Ada uses Pascal as a base language. Pascal was designed to be a

language for the teaching of programming. This does not mean that Pascal is

a subset of Ada; hardly anything from Pascal has found its way unaltered

into Ada. The principal inheritance from Pascal is its basic philosophy - that

both algorithms and data structures should be specifiable, precise and clear,

and that the logical consistency of a program should be ensured by the com-

piler wherever possible. Thus, Ada is principally concerned with readability,

main t~nability and security. (58:11, 42:viii)

Ada, however, goes beyond Pascal in defining new types of data objects

and provides additional measures to help ensure safe programming practices.

Language features of Ada allow more programmer errors to be caught at

28

compile time rather than during execution. Ada provides capabilities for

concurrent programming, error detection and handling, and effective packag-

ing of data and procedures. It also provides capabilities and tools for large

programming teams to work together effectively on large projects with a high

degree of productivity. These capabilities allow Ada to meet its primary

objective of being a language for embedded computer systems. (42:4)

To better visualize Ada as a programming language, the following examples

are provided:

EXAMPLE OF A SIMPLE ADA PROGRAM

with TEXT_10;use TEXT_10;
procedure THIRDMULTIPLY is

I,J,PRODUCT: INTEGER;
package INT_10 is new INTEGERI0(INTEGER);
use TEXT_10, INT_10;

begin
GET(I) ; - - read the first number
GET(J) ; - - read the second number
PRODUCT:=I*J; - - multiply them
PUT(PRODUCT); -- print the result

end THIRDMULTIPLY

THIS PROGRAM MULTIPLIES TWO NUMBERS
(37:3)

29

Construction of an Ada Program (58:14)

An Ada program requires two distinct pieces of Information.

1. The data which is to be processed must be precisely defined.

2. The operations which are to be performed on that data must be specified.

specification of the

data to be used by the

program
JJ cedure NAME is

sequence of statements begin

defining the actions to

be performed
end NAME;

t1l0 procedure Is a keyword followed by the name of the
program which Is chosen by the programmer. Keywords
denote particular kinds of constructs. In this example, the
keyword procedure denotes the start of a piece of
program which Is to be executed. Keywords are written In
lower-case and programmer-defined words are written In
UPPER-CASE.

(110 Is Is a keyword followed by the specification of
the data to be used by the program.

(11J The actions to be performed by the program on
the data are then written as a sequence of
statements between begin and end.

(1N* The name of the program Is given again at the end.

30

Systems designed and written in Ada use a programming approach

substantially different from traditiori& programming. To illustrate, lets look

at a problem that involves ascertaining the value of the change in ones

pocket. The traditional program might say:. Take a coin from the pocket; if it

is a quarter, add 25 cents to the total; if it a dime add 10 cents, etc.; then take

another coin. An Ada solution might say: Take all coins from the pocket and

divide into like groups of quarters, dimes, etc.; determine the value of each

group simultaneously; and add the subtotals together. The scope and ap-

proach of the difference between Ada and traditional programming language

is substantial. (27:153)

Ada: More Than Just a Language

Designing and developing weapon system software using Ada is far

more encompassing then just programming in the Ada language. To appreci-

ate the magnitude of Ada, one must also look at its total programming envi-

ronment. Since computers manufactured by different companies usually

contain different architectures and operating systems, the Ada programming

support environment is a compilation of a variety of software packages re-

ferred to as tools.

First the programmer writes the programs using a set of integrated

software tools called the Minimum Ada Programming Support Environment

(MAPSE). The MAPSE consists of compiler (with library manager), symbolic

debugger, editor, job control language interrupter, link loader, and configura-

tion management system. The MAPSE is a set of transportable software

tools that can operate on a variety of different host computers. Between the

MAPSE and the host computer there is the Kernel. The Kernel is a software

31

package that interfaces all of the support tools in the MAPSE to a specific

host computer and is not transportable. It is unique to that computer. The

software that the programmer has written flows through the MAPSE through

the Kernel and finally to the host computer's operating system. The host

computer's operations system then allocates the software to the host com-

puter hardware for execution. The following diagram depicts this scenario:

(23:127-128, 29:38)

PROGRAMMER

SOFTWARE MAPSE
A= i TOOLS

UW~ER

UNERTRANSPORTABLE ASMS :FM
PftOFILER

APSE

NON- K INTERFACE
TRANSPORTABLE SOFTWARE

OPERATING
HOST SYSTEM /11117/C OMPUTER

HOST COMPUTER HARDWARE

32

Since the MAPSE is just a set of minimum Ada support tools, there is

the requirement, especially in the development of large systems, to develop

and use a robust software engineering approach. This approach is the inter-

lacing of a wide variety of software development and support tools called the

Ada Programming Support Environment (APSE). The APSE, as now con-

ceived, is hardware independent. It is a complete, operationally integrated

Ada programming environment that will support software systems through-

out a life cycle which encompasses conception, design, coding, testing opera-

tional use, and modification as user requirements change. Support software

entities are called software tools, support tools, or simply tools. (23:126)

The next diagram illustrates additional complexities of the APSE. The

APSE can be visualized using concentric circles with the innermost circle

representing the host computer hardware. The software tools listed on the

diagram are but a representation of the some seventy different tools that

comprise the APSE. (23:129)

APSE ARCHITECTURE

33

Clearly the development of an Ada program for weapon systems is a

very large undertaking. One may question the use of such an all-encompass-
ing, complex system of tools with the Ada language. However, as programs

get larger, the system to develop those programs must be large enough and

capable enough to maintain strict control over the entire devlopment process.

To support large software programs throughout their life cycle, there are

three basic requirements: (23:131)

" Complete and accurate information on each stage of the project from

development to support.

" Both general and specific support tools.

" Configuration management.

Ada addresses these requirements through the following:

" The data base provides a repository for accurate records.

" Software tools are a part of the APSE.

* APSE provides on-line configuration control.

The importance of the Ada Programming Support Environment can be sum-

marized as follows:

" Reduces the time to develop, code, test, document, and maintain

computer programs.

• Improves program and programmer transportability.

* Simplifies project coordination and assists management.

All of the above features directly impact the cost to develop the com-

puter program. The Ada compiler by itself is just another language, however,

APSE is an integrated programming environment which is intended to re-

duce the overall costs of computer program development. (23:132)

The major technical characteristic of Ada is that it ameliorates most

modern software engineering principles. Its unique characteristic is that it is

34

designed around the concept of the software component. Strengthening this

characteristic is that Ada supports the production of very large software

systems. In summary it is the combination of specific language features,

some auxiliary technical aspects, the process that develops and supports it,

and its acceptance by an international computing community of managers,

users, researchers, and governments that together make Ada unique.

(40:722,729)

The Ada program's administrative responsibility is now divided over

three distinct entities; the triservice Ada Joint Program Office (controls the

military standard), the Software Technology for Adaptable Reliable Systems

program (develops techniques and tools to boost software productivity), and

the Software Engineering Institute (accelerates transfer of technology to the

private sector). Recently, all three entities were placed under the control of

the Defense Advanced Research Projects Agency (DARPA). (39:11)

Ada is truly complex. The reader must understand that Ada is not just

a language, rather it is an entire macrocosm of technology. This macrocosm

of technology includes such items as the Ada language itself, the MAPSE, the

APSE, and all of the controls and administrative hierarchy established to

foster the use of Ada. These items, and others, make up the "Ada Culture."

However, this culture is not pure; Ada has been tarnished and has become

controversial. The next chapter examines the nature and scope of this con-

troversy.

35

CHAPTER FOUR

THE ADA CONTROVERSY

Before discussing the Ada controversy, it may be helpful to the reader

to quickly summarize the reasons for the Ada program. Previously with the

proliferation of languages and the extensive use of assembly language, the

following problems occurred: (42:10-11)

" High development and support costs.

* Excessive cost for developing tools.

" Unproven software tools.

" Additional costs to maintain the software by other than the original

developer.

" Additional costs and time for retraining of programmers.

Requirements layed down by the "Steelman" formulated the founda-

tion for creating Ada and solving the software problem. (42:14-15) These

were:

* Be suitable for embedded computer applications.

" Be appropriate for software in long-lived systems.

" Be suitable as a common language.

" Not impose execution costs due to unneeded generality.

" Provide a base for development and support environment.

" Exemplify good language design.

The open literature clearly demonstrated to the author that there are

conflicting views as to how the Ada program is doing in respect to the above.

This chapter examines the Ada program from two viewpoints. The

first part of the chapter discusses the perceived benefits of the Ada program.

36

The second part summarizes those issues that have caused negative views of

the Ada program.

Perceived Benefits of Ada

This section deals with originally expected benefits, as well as with

some other benefits not entirely foreseen in the early design of the Ada effort,

and gives a report on the positive Ada accomplishments achieved thus far.

Ada's focus emerged on program reliability, program maintainability,

ease of use, and efficiency. In this context, weapon system reliability is criti-

cal, since embedded computer systems typically deal with life-and-death

situations. Reliability is critical because software in systems such as a flight

control system for the F-16 must not fail. Ada has special features to deal

with reliability. Program maintainability is important since embedded com-

puter systems typically have long lifetimes (typically 15-25 years) and are

frequently updated. Maintainability is stressed by the ease of reading a

program over the ease of writing one. Efficiency is important, since in many

respects Ada is competing with assembly language, and efficient use of space

and time is critical in most real-time applications. (42:5)

Ada is designed to simplify the production and support of large pro-

grams. The complexity of a computer program increases rapidly as the pro-

gram becomes larger. Ada provides a number of facilities for dividing pro-

grams into smaller modules thus helping make Ada programs easier to read,

to write, and to modify. The ability to divide programs makes the smaller

divisions entities in themselves (these entities are called software modules).

As Ada environments mature, and the use of Ada becomes more widespread,

software modules, in the form of Ada packages, can be developed once and

37

used in several systems, thus substantially improving productivity. There

are however non-technical hurdles, such as incentives to contractors for

reusing software and legal issues relative to reused software. Ada was de-

signed to support reused software and early efforts are promising. (11:165,

37.vii)

Since Ada has been in existence for only a short time, the extensive use

of Ada is still quite limited in the markets today. However, the reported pro-

ductivity figures on a number of programs are impressive. Various studies

show production rates of between 311 and 1,400 lines of code per program-

mer-month on a wide variety of software efforts. These figures exceed the ac-

cepted industry norm of between 325 and 400 lines of code per programmer-

month. Coding and unit testing in Ada increased in productivity, especially

as the number of errors generated by the Ada code went down dramatically.

COST TO FIX SOFTWARE ERRORS

$20000
w
0

$10000
0
0

$0-0
CV)

REQUIR DESIGN CCOE TEST O&M

SOFTWARE LIFE CYCLE

38

COST IMPACT OF FIXING SOFTWARE

40

0I-

30

-U.

0 ul
uw

uz,

w3: 20

L

RE0UIR DESIGN CCE TEST O& M

SOFTWARE LIFE CYCLE

Software maintenance figures are limited because of the lack of historical

data. However, estimates indicate that the long term result of maintaining

reused software will yield an estimated 60 percent to 80 percent reduction in

maintenance problems. (11:165-171)

Although limited in marketplace use Ada is being accepted throughout

the world, even in its infant stages. Ada is an ANSI and a military standard

and became a U.S. Federal Information Processing Standard (FIPS) in Octo-

ber of 1985. Ada has also been adopted by NATO as a standard for its com-

mand, control, and information systems. Ada has met with widespread ac-

ceptance within the individual European nations as well. The policy of the

Ministry of Defense in the United Kingdom currently allows either CORAL

66 or Ada and, since July 1987, new systems will require Ada. For German

defense applications, only Ada and PEARL are allowed currently. The Cana-

39

dian government has chosen Ada as the preferred language for defense sys-

tems. Ada is also mandatory for all Swedish real-time defense systems. The

real test as to Ada's acceptance will be its use in many of the new, high-

profile weapon system programs, including the Advanced Tactical Fighter

(ATF) and the Advanced Tactical Aircraft (ATA), along with other govern-

ment programs. (25:736-738)

Since 1985 the industry trend has indicated clearly Ada's new wide-

spread acceptance. This acceptance was also demonstrated by the wide

variety of products offered at the Association for Computing Machinery's

Sigada meetings. The size of the Ada market in 1984 was estimated to be

about $300 million. By the end of 1985, the estimates more than doubled to

more than $750 million. Indications are that the Ada market surpassed $1

billion during 1986 and projections indicate that they will surpass the $10

billion annual rate by 1990 for DoD embedded software alone. (6:51, 56:20)

The DoD has not waivered from original objectives and continues to

mandate Ada. On 31 March 1987, DODD 3405.2 established a weapon

system policy which stated that all software developments for new weapon

systems be performed in Ada as the single, common, high-order (level) pro-

gramming language. Deputy Defense Secretary William Taft IV broadened

that directive in April, 1987 in DODD 3405.1 by specifying that Ada must be

used on all DoD computer resources, with a few other languages permitted in

certain cases. These directives reaffirm the DoD's commitment to Ada.

(21:61)

Negative Views of Ada Competence

There are, however, negative views on the competence of Ada. The

40

rosy picture of Ada solving the weapon system's computer software problem

has been tarnished. To better understand the issues involved, we need to

discuss four separate aspects related to perceptions of applied Ada. The first

aspect explores various management issues and perceptions. The second

discusses the problem of Ada software tool development. The third treats the

highly emotional aspect of cost. The final aspect reviews those technical

problems that surfaced with the application of Ada.

Management

Ada has become an emotional issue even at the senior levels of the

DoD. The following quotes from the incumbent Under Secretary of the Army,

James R. Ambrose, at the annual Ada Expo and Special Interest Group con-

vention in Boston sums up many feeling about Ada. He cautioned the Ada

vendors to be conservative in statements about the capabilities of the new

language because he felt that exaggerated claims do more harm than good.

(21:60) Typical of his comments are:

Ada is beset with too much Hyperbole for its own good.

I am not impressed, have not been, and I remain willing to be impressed,
with quantitative measurements of the superiority or productivity or the
virtues of anything such as Ada. 1

What I have seen thus far has been largely rhetoric.

Using this new language met with strong opposition from many pro-

gram managers, especially in the early 1980s, when Ada compilers were

either nonexistent or of poor quality. This caused program managers, both

in the military and in industry, to write Ada off as a failure. In addition to

41

these early assessments, many hard line program managers believed that a

well-structured, highly maintainable code could be produced in any language,

as long as the programmer worked within the constraints of an effective

design methodology. (49:15, 21:60)

Critics contend that the method that brought Ada into existence was

lauded as unique - this is true by any quantitative measure - but qualita-

tively Ada was not so different than every language before it. Ada was an

exercise in bottom-up logic. With all of the work in the requirements docu-

ment, there was no clear expression of how Ada was supposed to be used. If

Ada's gestation really was unique, why was there a long period of intensive

investigation of how to use Ada effectively following the completion of the

language? This was especially true in the need for a proper software develop-

ment environment to achieve the full benefits of the language. The require-

ments analysis for the programming environment was not begun until the

language definition was essentially complete. This has been akined to plac-

ing the "cart before the horse." The discussions continued throughout the

early 1980s point to the assertion that, after a decade of effort involving 27

different contractors and a reported $1 billion in taxpayer money, Ada has

become an electronic tower of babble. The main reason given for this asser-

tion is that the DoD never provided complete performance specifications to

the contractors. (20:87, 14:280)

Tools

Ada has been overpromised based on the time it takes to mature the

language and the new engineering practices. A variety of software tools need

to be developed in order to insure the full benefits of Ada. A large amount of

42

these tools are still not fully developed, especially existing support tools

which provide the following capability: (33:20)

" software documentation.

" configuration control.

" maintaining developmental history.

" debugging.

" project schedule and effort management.

Costs

Acquiring an Ada capability represents a large corporate investment.

The initial buy-in, however, is only the beginning of the financial burden.

Corporations must also consider how long the training will take, and how

productive the programmers will eventually become. These costs not only

include the cost to train programmers in the Ada language, but also to train

the programmers and mangers in new software engineering practices and

disciplines. Until Ada compilers mature, the slower compilation time and

run times of Ada add to development costs. After considering training and

productivity issues, it soon becomes clear that a bargain-basement Ada sys-

tem may be a more expensive proposition then buying a robust system in the

first place. (33:17, 24:101)

A company just starting to use Ada is very concerned with training.

Ada cannot be taught the way older, sequential languages were taught. Con-

sidering Ada as just another programming language is like viewing the tip of

an iceberg. The education of Ada professionals will take time. A commonly

accepted training time frame is from six to 18 months in order to achieve

proficiency. This is because Ada is one of the most complicated programming

43

language in existence. Since Ada must be taught in a software engineering

context, and not just as a language, educating the existing work force in

software engineering will not be easy. (27:148, 153)

Procuring an Ada capability is a major investment that requires a

thorough examination of six basic issues: (24:101)

* compiler validation.

* implementation dependent features.

* bench-marks and performance.

• development environments.

* retargetability.

* training.

Because of the many uncertain and unproven techniques associated

with Ada, the cost to do business using Ada is suspect at best.

Technology

Embedded computers in modem weapon systems and its ensuing

avionic software demand very fast processing, swift calculation of floating-

point mathematics, and compilers that produce compact code. Most validated

Ada compilers produce code that is too inefficient for avionics. Compounding

this is that many avionic systems contain microprocessors or custom arrays

and have no Ada compilers targeted for the smaller computer. (48:45)

Many of the first Ada compilers were written by software engineers

with experience in large-system design. The use of features specific to par-

ticular implementations of the language in avionics and a lack of experience

and information exchange among compiler writers has started the application

of Ada down a rocky road. Compiler writers are not used to considering the

44

underlying hardware. (48:45)

The three examples below demonstrate that the Ada compilers written

for early embedded systems fall short of actual operational requirements.

* A missing capability of the Ada compiler is interrupt handling. Ada

treats an interrupt handling routine like any other task. An Ada compiler

will generate code to allocate data structures, save and store data from other

tasks, and so forth, when responding to system-generated interrupts. In real-

time control applications, such overhead can slow down the processing, ren-

dering the control useless. There is a compiler implementation alternative

that can be tasked to do something out of the ordinary at a specific point.

This in turn does not generate the housekeeping code for the interrupt. This

technique however, is not tested during the compiler validation test. (48:46)

* Ada in embedded systems needs to site data or code at an absolute

memory location. This is a primary feature for embedded systems. This

technique is described in the requirements documents but not validated on

early compilers. (48:46)

9 Ada lacks the explicit bit-set and bit-reset operations to manipulate

external hardware devices in microprocessor systems. Bit manipulation - the

direct issuance of a command to set an individual bit in memory - is crucial

for quick response in systems with bit-mapped 1/0. This is an optional fea-

ture in the requirements documents that is not included in many compilers.

(48:46)

General Dynamics engineers have learned in developing a program in

Ada for a series of flights on an F-16 testbed aircraft that the language has

some limitations in running real time programs. As the General Dynamics

engineers have found, Ada today faces two distinct constraints. (15:73-75)

• The first constraint is that most of today's embedded processors are

45

relatively compact microprocessors having a very limited memory and space

requirements. Secondly the operational programs run at very high speeds

and must be able to react to the continuing changes in the physics of flight.

Ada is a very robust language and is not as yet optimized for smaller proces-

sors, which makes programming of small processors in Ada difficult. In

addition, "hard" real-time applications that require analog to digital conver-

sions in less than 10 microseconds require a language that is optimized in the

run time environment. The General Dynamic's tests found that Ada has its

limitations in these "hard" real-time applications.

In summary, the literature reveals that the Ada system continues to

expand and is beginning to be accepted in the community, however, there are

a number of issues and problems that critics raise to question the competence

of Ada.

46

CHAPTER FIVE

CAUSES OF THE ADA CONTROVERSY

This chapter will address the underlying causes of the Ada controversy.

First the conceptual rational which has fostered the controversy will be out-

lined. Second, various issues will be assessed and their validity will be deter-

mined. Management, tools, costs, and technology will be the bases for the

discussion.

Why There is a Perception That Things Are Not Going Smoothly

Ada was designed to replace existing languages for the programming of

DoD embedded computer systems such as Jovial (USAF), CMS-2 (USN),

Tacpol (USA) and SPL/I (USN). In addition, Ada is also intended to replace

FORTRAN where it is used in embedded computer systems applications. Ada

makes the entire software business different then it has been for the past

thirty years. One can expect that this dramatic change will foster animosity

across the government and industry. This subsection addresses, in the

broadest terms, the causes for the controversy. (42:4-5)

Management

Fundamental change- often meet with great resistance. Since Ada

impacts attitudes, mindsets and cultures, its implementation can be expected

to generate substantial resistance. Counters to the arguments have been

encountered at every level in government and industry. Fear that program-

47

ung skills will be devalued and fear of downgrading, coupled with the re-

fusal to believe that the new methods actually work, have to be dealt with.

This fear of downgrading may be countered by the fact that software engi-

neering is actually an upgrading of skills and that is is easy to maintain the

software product written in Ada code. Therefore, one has to expect resis-

tance. (27:153)

The essence of software is a construction of interlocking concepts: data

sets, relationships among data items, algorithm, and invocations of functions.

This essence is abstract, in that the conceptual construction of a software

program is the same under many different representations. It is nonetheless

highly precise and richly detailed. The hard part of building software is the

specification, design, and testing of this conceptual construction itself, not the

labor representing it, and testing the fidelity of the representation. We still

make syntax errors, to be sure; but they are fuzz compared to the conceptual

errors in most systems. Building software will always be hard. There is

inherently no magic in software programming. (33:5 1)

The development of the Ada market and its acceptance emanate from

four major forces: government policy, technology, market dynamics, and

industry economics. These forces have shaped the Ada environment of today

and will continue to shape it into the 1990's. (3F:41)

The evolution of Ada comprises four stages:

* Proof of the technology

1972-1983. Tremendous uncertainties existed

* Early stages uf commercialization

1983-1988. Government policies were strongly worded but

waivers were granted. Companies committed to the Ada industry began to

emerge.

48

* Transition to industry maturity

1988-1992. Strong government mandate. Prices are dropping.

Commercial adoption is increasing. Universities are teaching. Senior man-

agement is beginning to understand the economics.

'Commercial APSE

1990's. A sophisticated, integrated Ada development environ-

ments should be available for a variety of hardware platforms. (35:41-43)

Ada Industry Development Phases

SOPHISTICATED,
INTEGRATED ,

ADA DEVELOPMENT
ENVIRONMENTS

AVAILABLE

LU
40" INTERPLAY BETWEEN
W z GOVERNMENT POUCIES,
c 4 MARKET FORCES,
a a TECHNOLOGY, AND

INDUSTRY ECONOMICSCL,
U1EARLY
0 COMMERCIALIZATION -

EFFORTS
a..

PROOF OF THE
TECHNOLOGY

1980 1982 1984 1986 1988 1990 1992

YEAR

S-curve industy modelling technique
developed by
Richard Foster ot McKinsey & Company (:)

49

Structuring a software development program based on Ada is quite

different then using older methods. The development process requires close

attention to software engineering principles to recognize and control the

complexities of the Ada programs. The disciplines that must be included in

an Ada development effort include: accurate and integrated knowledge of the

system, program and system objectives, and the design, development, test,

maintenance and modification process, including the management process.

(38:32)

In September 1987, the Defense Science Board published a report on

the finding of their Task Force directed to study military software. The key

points made in the report are summarized:

* The Task Force was convinced that today's major problem with

military software development are not technical problems, but management

problems. (33:7)

e The Task Force reported that it is very important for DoD to have a

standard programming language; Ada is by far the strongest candidate in

sight. The 1983 mandate for Ada was technically premature. DoD commit-

ment to Ada since that time has been weak. The state of Ada compiling

technology is now such that it is time to commit vigorously and wholeheart-

edly. (33:4)

* The Task Force recognized that few program managers will want to

take on the headaches of being the first user of a new tool. Only top-level

DoD commitment and mandate can make this happen. (33:2)

Despite industries like IBM embellishing Ada, there is still animosity

in the community, and Ada has neither extended its identity nor ventured

beyond the military/industrial world. One reason is the entrenchment of

languages such as COBOL in data processing departments. Another, is the

50

relatively recent incursion of so-called fourth-generation languages from a

number of vendors. Says Michael Ryer, director of Ada products for Inter-

metrics Inc., Cambridge, Mass., "There is a great inventory of billions of lines

of COBOL code. You can't very well rewrite every single line, and it's hard to

put a little bit of Ada on top of a lot of COBOL." (32:35)

Tools

The problems with software tools (availability, reliability, robustness,

maturity) will remain a controversial issue for years to come. The develop-

ment of the tool set takes time, not only from the production of these tools,

but also from the appropriateness of the tools. On one hand, the advocates of

Ada point to the availability of tool sets, and on the other hand the critics of

Ada point to the lack of such tools. It appears that they are both wrong and

both right.

Costs

The cost associated with training managers, engineers, and program-

mers varies somewhat from company to company. Organizations that were

knowledgeable in a language such as Pascal find that Ada is merely the next

logical step in language evolution. For those with backgrounds in FOR-

TRAN, COBOL, or assembly language, Ada, for many, is too much to swallow

in one bite. (42:x)

The Ada language was designed to be one of the primary means of

increasing software productivity and controlling costs. Because of the intense

51

interest in Ada, programming efforts have been carefully monitored to gauge

the extent of progress in increasing productivity. The results of recent stud-

ies reveal results that clearly demonstrate Ada's link to high productivity.

However, increased effort in the design phase has been necessary to produce

software for potential reuse and the Ada features that support modularity.

Therefore, many of these software production efforts have indicated a shift in

effort from the classical coding phase to earlier in the life cycle. But develop-

ers have noted that increasing the effort in design is more than offset by

decreased effort in coding, integration, and maintenance. (11:165)

Technology

Ada is a modern language system designed to meet the needs of soft-

ware engineers programming applications in embedded computers for many

years to come. Virtually all existing languages in general use were designed

a long time ago. Even Pascal, is now almost two decades old. When these

languages were designed, computer systems had restricted memory space,

microprocessors were almost non-existent, and multi-processor configurations

were rare. Today, however, Very High Speed Integrated Circuits (VHSIC)

and Very Large Scale Integrated (VLSI) technologies offer potentially unlim-

ited processing power and memory capacir y, with the result that more and

more complex applications are being undertaken. (58:11)

The reputation of Ada has been tarnished somewhat by actual tests

using embedded computer systems in operational weapon systems. In Sep-

tember 1984 an F-15 Eagle fighter plane had, for the first time, used Ada

successfully in the field. Software that was coded in Ada operated a digital

52

ffight control system. Technical difficulties that were annotated included:

(48:44)

* Inefficiencies for embedded systems; it produced code that was too

large and too slow.

e It lacked some essential features: bit manipulation, interrupt han-

dling, and the ability to store data at specified locations in memory.

* Programmers reported that some software packages could not be

transferred between systems without modification.

" Programmers who could code in Ada were scarce.

" There were few good compilers, debuggers, and text editors suitable

for the needs of embedded systems. (48:44)

Ada's complexity has contributed significantly to the slow maturation

of the language, its compilers, and associated tools. Ada compilers execute

slowly compared to compilers like FORTRAN compilers. However, Ada com-

pilers do much more checking of the code and hence find more errors in the

program. In addition to the compiler taking a relatively long time to compile,

the code generated by the Ada compiler is not highly optimized. Ada offers

the capability to do dynamic checking while executing, thus slowing down the

execution speed. If this checking is turned off, then the code will run quite a

bit faster. Eventually as the market expands and matures then we can ex-

pect that more optimized code generators will be forthcoming. (33:17)

The initial institutionalization of Ada has been wrought with opinions

that question the validity of the DoD's decision to adapt Ada as a standard.

The next chapter will interpret the findings of the research and address those

concerns.

53

CHAPTER SIX

AN INTERPRETATION OF THE FINDINGS

This chapter places the controversy into perspective as it relates to the

intended purpose of Ada. If one agrees that there is a software problem then

something must be done. Not only from the efficiency, reliability and capabil-

ity of modern day programming, but there are marketing forces outside the

United States that are cause for action. In Japan, for example, the software

productivity norm is 3,500 lines of code per man/month. In the United

States, it is 183 lines of code. The same thing could happen to the United

States software industry that happened to the United States home electron-

ics, steel industry and to others - the U.S. lost its lead. We must not fall

victim to stagnation, we must find solutions to increase productivity and

sustain our lead in technology. (9:52)

Management

Throughout the research on this paper it became fairly clear that the

software community centered their attention on the programming language

Ada and therefore shunted the greater aspects of the Ada system - that of

improved software engineering technology. Embellishing the software engi-

neering technology is crucial to Ada's success. (6:44)

Developing software in many aspe-ts is very abstract. Producing code

and allowing that code to perform its intended function historically has been

the measure of success. Therefore, the software community places a lot more

emphasis on the act of coding than on any other phase of the software life

54

cycle. For many managers and programmers, no work is performed until

code is produced and the computer does something. It is much simpler to

require a programming language like Ada than it is to require a software

engineering discipline which embellishes Ada. That is why many people view

DODI 5000.31 as a precept to continue "business as usual" with Ada being

the implementation language. Not only is the understanding skewed but the

amount of effort required to educate the software community in the software

engineering discipline is staggering compared to the amount of effort re-

quired to teach Ada syntax. Therefore, for many people Ada is just another

language and the thinking as to its benefits falls within this limited scope.

(6:44-45)

The transition from limited software engineering practices to more

rigorous software engineering methodology is challenging. Government

organizations and contractors cannot expect Ada to be "just another program-

ing language" to be learned after a contract is awarded. Many of the soft-

ware managers today still believe that you can manage a system development

using Ada with the techniques and tools of older languages. The key to suc-

cessful efficient software development in Ada requires advance commitment

by the contractor to teach managers and developers the language, its soft-

ware engineering features, and how best to use it throughout the software

development life cycle. (17:474, 1:65)

The software engineering aspect of Ada has not been helped out by the

validation of Ada compilers. Even though the validation consists of running

more than 2,000 test programs to ensure that the language meets the re-

quirements of MIL-STD-1815A, this does not mean all functions necessary to

do a program are available. Chapter 12 of Appendix F of Mil-STD-1815A,

specifies the machine-dependent functions are not part of the validation. The

55

speed and efficiency of the compiler also are not checked. Other fimctions

and items not checked during the validation process include the quality of the

environment tools, tasking, low level 1/0, and library manager. This concen-

tration on the syntax of the language and the apparent disregard for the

software engineering environment just added fuel to a misunderstanding of

what is required to work with Ada. However, plans are under way to develop

a full-scale Ada Compiler Evaluation Capability (ACEC) that will address all

of the performance aspects rather than just syntax conformance aspects of

Ada compilers. (10:54, 29:38)

Sometimes it takes a "kick in the pants" for major corporate acceptance

of a new way of life. International Business Machines (IBM) signed agree-

ments with a number of Ada software and hardware vendors to make it

easier for aerospace companies to use IBM computers to design and run

software in Ada. This was in response to IBM's loss of major contracts such

as the software support environment for the NASA space station. Valued at

$140 million, this contract would have required the development of about 10

million lines of Ada code. IBM's shift to Ada acceptance has been slow but

now IBM's long range plans are to provide Ada software for all of its comput-

ers. (22:67-69)

The Defense Science Board Task Force on military software stated that

the DeLauer mandate to use Ada was premature. They felt that it could not

be followed in 1983 because of slow maturation of the language and its com-

pilers. However, Dr. DeLauer had not issued that mandate, it is doubtful

that Ada would be as far as it is today. (33:17)

The DoD mandate to use Ada is stonger because it is getting harder

and harder to get a waiver. This headlined thrust, coupled with acceptance

throughout the world, will aid in the transition process. Wider acceptance is

56

now becoming a reality with NATO, Japanese, and civilian software houses,

including the FAA's Advanced Automation Program to upgrade the air traffic

control system and NASA's Software Support Environment for the space

station. Ada still has a way to go in order to claim a wide field of acceptance.

Ada tools, particularly compilers, are still not optimized to meet the special

needs of embedded systems. The Software Engineering Institute at Carne-

gie-Mellon University is developing a software engineering curriculum to

reduce the shortage of qualified software engineers proficient in Ada. This

should also help. (43:43)

In the broadest management terms, one can look to the aerospace

industry and see why the transition to Ada has been in the limelight of con-

troversy. After examining some of the issues, the need for Ada gets stronger

and stronger. (16:53-68)

* A casual attitude about software and software organizations.

Typically the hardware organizations have a great depth of knowledge

of the system being designed. Software on the other hand is performed in the

aerospace industry by people with specialized training in software with little

training in the system to be designed. This does not work with Ada systems.

• The glamor days of the aerospace and software-economy, prestige,

and draft are over.

The brightest people used to go to the aerospace industry. Today the

situation has changed and the software people are being drawn to the com-

mercial industry.

* Dealing with the abstract is difficult.

Not everyone can learn Ada. Ada is the first language intended for

widespread use that emphasizes formality and abstraction. It is wrong to

expect that everyone who is presently developing software can learn Ada.

57

* The corporate culture of cost effectiveness does not encourage qual-

ity.

Corporate entities in the United States exist for one well-defined pur-

pose - maximize profitability. Investments in prototypes, test and develop-

ment equipment, and building the software multiple times as reusable pack-

ages are rare.

* The DoD Customer-User-Vendor relationship is a hostile one.

The program offices now mandated to procure systems designed and

built in Ada do not understand the motivation for Ada nor its potential bene-

fits. The buyer is acquiring Ada-based developments in an environment

fostering hostility rather than trust.

* Bureaucracy as a substitute for decisions is prevalent.

A mandate via standards as a means for encouraging Ada use will not

foster the creative process and therefore will not generate enthusiasm within

the program offices or the development team.

9 Creativity and Quality take a back seat to short term management

concerns.

Short term profits take a front seat in lieu of the eventual use of the

software.

Tools

Concerns over the efficient and effective use of software tools hold the

must credence in downplaying Ada. After July 1984 all Mission Critical

Computer Resource programs for the DoD had to use Ada. However, at that

time there were not many efficient support software tools available to help

the program manager or, for that matter, the programmer comply with the

58

mandate. Compilers were being developed, most of which were not even

targeted to the required processor. The attempts to define environments

appeared to be slow and cumbersome. Yet, by mandate, DoD weapons sys-

tems had to use Ada.

The advantage of this approach was that it got people's attention and

convinced the community that the DoD was serious about Ada. However,

because of the lack of efficient software tools to support an Ada development

effort, program managers from industry and the government had real con-

cerns about cost overruns and schedule slippage. These problems, coupled

with a lack of trained Ada programmers, led to a reluctance on the part of

many program managers to heavily commit their programs to Ada. The

waiver process was established to defuse the concerns for these managers.

Since that early time, as more and more programs embellish Ada, the waiver

process should cease and the tool environment should strengthen. (12:36)

Costs

DOD-STD-2167 contains a life-cycle model for software development

which includes the following phases:

LIFE CYCLE MODEL FOR SOFTWARE DEVELOPMENT

SOFTWARE
REQUIREMENTS

ANALYSISANALYIS ,PRELIMINARY

DEINDETAILED

COOING 1DESIGN

CODING
AND0__________

UNIT TEST COMPUTER SOFTWARE
COMPONENT

INTEGRATION AND1 NTESTING
COMPUTER SOFTWARE

CONFIGURATION
ITEM TESTING

59

The classical cost percentages change with the implementation of Ada.

Software requirements analysis for a representative Ada development effort

takes about 15 percent of the total effort. This is a higher percentage than in

typical projects. The design phase of a software development effort using Ada

goes up compared to typical projects. However when reusable Ada designs

are implemented, productivity increases of 50 percent have been realized.

Therefore, program managers that are used to costing their development

using older languages will have to reevaluate expenditures during the devel-

opment process. The total cost may even go down as the Ada methodologies

mature. (11:166-167)

We mentioned in a previous section of this paper the cost of training

and emphasize that it is mistake to treat Ada as just a language; it's a meth-

odology. A course in the language C may take three days. It takes a mini-

mum of 21 days to learn just the syntax for Ada. This additional cost must be

budgeted for and its benefits must be realized to be accepted. (49:15)

Technology

Technically speaking Ada has finally come of age. Over the past three

years, the performance of Ada systems have improved dramatically. Many

compilers now have performance characteristics better than older languages

such as Pascal, and offer many other benefits for the real-time programmer.

The literature suggests that there is a definite increase in processing capabil-

ity of the newer compilers. This is refreshing, since the technical side of the

software community must embellish Ada as much as the management side.

(30:76)

Recent application testing of Ada programs has verified the continuous

60

improvement of the language. In August 1988, a 70-hour joint Air Force and

Navy test series was flown on an F-15 at Edwards AFB. The tests were part

of the Ada-Based Integrated Control System (ABICS) program. (41:16)

A major objective of the ABICS program was to establish whether an

Ada-based system could respond fast enough to match the performance of

standard units programmed in assembly language or FORTRAN. The recent

ABICS test established that, when combined with compatible computer hard-

ware and software compilers, Ada does not impose any significant restraints

on system speed. This is critical as it can now be applicable to flight-critical

avionics as well as other time-sensitive avionics functions. (41:16)

Much of the previous adverse press on Ada has begun to settle down.

Management is beginning to understand its importance and the technical

community is beginning to use it effectively. Only time will tell to what

extent the decisions made in the last decade will affect our war fighting

capability for the future. The next chapter will conclude with an assessment

of the original hypotheses and make recommendations for the future.

61

CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

Summary

This is the concluding chapter of this paper, but not the end of the Ada

controversy. Ada is still maturing and will have to go through many more

growing pains before the controversy settles down. The author stated the

purpose of this paper was to address the subject of the still new and contro-

versial Ada, asking the question whether it will it solve the perceived soft-

ware problems for tomorrow's weapon systems, or will it cause unmitigated

problems?

The number of computers embedded in DoD weapon systems continues

to escalate at unprecedented rates. In weapon systems of the recent past,

hardware was the driving force in system capability, cost, selection, reliabil-

ity, and maintainability. Currently emphasis shifted to software as the

preeminent focus for new weapon systems because of software's potential to

increase the capability of the weapon system and the high costs incurred

during development and support phases of a weapon system's life. Reviewing

the purpose and objective of the study centers on the fact that Ada is still a

relatively new and controversial programming language. The problem under

consideration in this study was that of determining the extent to which Ada

has achieved its intended purpose of functioning as a standard programming

language for the creation of large-scale embedded computer system programs

for DoD weapon systems. Consequently, this study examined the develop-

ment since its adoption to the present and actual performance of Ada in

62

actual use today as well as in developing future programs for weapon systems

to determine whether this programming language has corrected the perceived

software problems of past software languages or whether Ada use has re-

peated the problems of past computer languages as well as caused newer

problems that nullify achievement of its selection objectives.

Chapter I highlighted the problem, purpose, objective and hypotheses

of the study. The chapter also explored the ever increasing dependance of our

modem day weapon systems on the computer and its ensuing software. With

this escalation, and the dependency of computer systems, comes the high and

ever increasing cost associated with developing and maintaining weapon

systems. The final part of the chapter introduced the DoD solution to the

software problem - Ada.

The next chapter unraveled some of the computer mystery and estab-

lished a common framework to discuss the subject of Ada. The last part of

that chapter directed the attention of the reader to the ever increasing impor-

tance that the computer plays in the critical functions and capabilities of our

modern day weapon systems.

The third chapter set the stage for understanding just what Ada is all

about. An examination of some historical aspects of Ada development and

use were provided to give a framework for the analysis. The Ada engineering

support environment and its ensuing software tools were reviewed to scope

out the complexities of using the language.

The fourth chapter examined the Ada program from two view points.

The first part of the chapter discussed the perceived benefits of the Ada

program. The second part summarized those issues that have caused nega-

tive views of the Ada program. To better understand the issues, the section

was broken up into four subsections discussing the negative perceptions of

63

applying Ada.

Chapter five discussed the underlying causes of the Ada controversy

and why the controversy arose in the first place. The next chapter placed the

controversy into perspective as it relates to the intended purpose of Ada.

In summary the issues were explored in a broad context in order to get

a handle on the question at hand. Ada, still new and controversial, will it

solve the perceived software problems for tomorrows weapon systems, or will

it cause unmitigated problems?

Conclusions

It is appropriate to review the premise of the study hypotheses. The

Department of Defense embarked upon a firm direction to install Ada as a

cornerstone to solving the "software problem." Since the infusion of comput-

ers into U.S. weapon systems, controlling software costs, software timeliness,

and reliability have been rout with less than desirable results. Solutions to

past software problems have not worked. Therefore, this study had two

major hypotheses:

Hi = Ada has achieved its intended purpose of functioning as a

standard programming language for the creation of large-

scale embedded computer system programs for DoD weapon

systems.

H2 = With the proper degree of software engineering, Ada, used

as a standard computer programing language for weapon

system software development, can eventually resolve past

64

software language problems in the areas of cost, reliability,

system capability, maintainability, and weapon selection.

The author concludes that hypotheses one is true. There is over-

whelming evidence that Ada has achieved its purpose of functioning as a

standard programming language. This is true based on Ada's mandate, its

growing use in modem weapon systems and its acceptance in the interna-

tional community.

The author concludes that hypothesis two may be true. Clearly Ada

was designed technically to address the issues of solving the past language

problems of reliability, system capability, maintainability and selection for

embedded computers in weapon systems. However, the issue of cost reduc-

tion was not totally supported by the research. On one hand, considerable

resources are required to allow the developer the capability to program effec-

tively using Ada. On the other hand, there appears to be a future saving

potential associated with the use of Ada. Both start up and support costs

were not effectively substantiated during the research, therefore, the author

cannot totally assess the full validity of the second hypothesis.

Recommendations

The insertion of Ada has started to take hold in the DoD, even though

it was by decree. However, much more must be done in order to foster

greater acceptance of this language.

The author offers the following recommendations:

* Since there is overwhelming evidence that Ada has achieved its

purpose of functioning as a standard programming language. The full benefit

65

of using this language will be forthcoming only if the DoD and the aerospace

industry foster the transition of new weapon system development into an Ada

environment. This is not to say that the criticism should cease, on the con-

trary, criticism spears innovative reactions and this too can build a stronger

system to control the software problem.

9 The issue of cost was not totally supported by the research. Until

this issue is empirically proved one way or the other the Ada controversy will

continue. The problem with proving this issue is that time may be the only

avenue for proof. Most of the research points to a great saving in the opera-

tional and maintenance phases of a system's life cycle. This is assumed be-

cause of the software engineering, ease of maintenance, and reusable soft-

ware aspects of Ada. However, Ada has not been around long enough to

substantiate these claims. Therefore, it is recommended that a cost develop-

ment history on a number of major Ada design efforts be monitored by the Air

Force and updates be published as the weapon system goes through its vari-

ous phases of development and operation.

e A final recommendation looks to the future. If Ada and all of its

claims come true, we must not sit idly by and be complacent to claim Ada as a

victory for generations to come. Computer technology continues to escalate

and change. The DoD must keep abreast of these changes and react to them.

As graphical and automated languages bring us into the next generation of

software, the DoD should invest resources to see what the next solution to the

software problem may be.

A Final Word

The research suggested that indeed, Ada was not the calamity, but a

66

closer step to the panacea. Ada's progress has been viewed as slow by many.

However, when one considers the impact on system design, operational capa-

bilities, the escalating presence of computers on weapon systems, the critical

nature of the missions the software must produce, and the costs associated

with software development and support, it is prudent to go slowly to get the

best product we can. The Ada market continues to expand. The Deer Isle

Ada Research Group of Stonington, Maine, recently released a two part book

entitled Ada Market Reference: A Guide to the Industry. This book will be

updated every two months and gives a comprehensive review of the status of

Ada with vendor products and services. Anyone interested should contact

Lisa Schoonmaker at 207-367-5828. Ada has progressed from a program fo-

cused on the development of a high-order language to a program embellishing

that language and all of the good software engineering principles that must

be applied to today's weapon systems.

It is predicted that Ada will be the most important programming lan-

guage of the 1980s and 1990s and the last new major language prior to auto-

matic programming. We can not afford to wait around for these new auto-

matic programming systems, because we have to take care of the problems at

hand today. (27:148)

67

GLOSSARY

Analog: smoothly changing physical variables.

Assembler- a program that translates an assembly program into machine
code (object code).

Bus: a set of wires that carry signals around a computer or digital electronic
system.

Compiler: a program that translates a high-level program into machine code
(either directly or through an assembly program).

Digital: pertaining to the representation or transmission of data by discrete
signals.

Digital computer: a machine that operates on data or instructions ex-
pressed in discrete, or on-off (one or zero), form rather than the continuous
representation used in an analog computer.

Exceptions: a method which identifies an error in a program while it is
executing.

KAPSE: unique to a specific computer, the Kernel Ada Programming Sup-
port Environment provides the minimum set of functions necessary to inter-
face the host computer to the rest of the APSE.

Large-scale integration: the placement of thousands of logic gates on a
single integrated circuit (chip).

Microprocessor: a single integrated circuit containing all the elements of a
central processing unit.

Packages: a collection of logically related program entities that are grouped
together. Packages provide the means for treating a collection of program
entities as a single unit.

Pointers: the use of variables to point at an object in a computer's memory.

Program: a sequence of instructions for performing some operation or solv-
ing some problem by computer.

68

Software: instructions, programs, or data, that enables the computer to do
useful work.

Taskin. the capability to execute program entities in parallel (at the same
time).

Tools: a variety of software programs that help with the development of a
computer program.

VHSIC: a DoD sponsored technology effort to escalate the insertion of ad-
vanced microelectronic technology into weapon systems (Very High Speed
Integrated Circuits).

69

BIBLIOGRAPHY

1. Ada's Growth Brings New Techniques and Needs for New Tools." Aviation
Week & Soace Technology, July 11, 1988, pp. 65-66.

2. Aharonlan, Gregory, "Ada Software Reuse Tool." Defense Comnutinga
September-October 1988, pp. 17-18.

3. Anderson, Chris, "The CAMP Approach to Software Reuse." DefeneCom-
Ruting September-October 1988, pp. 25-29.

4. Barnes, John and Whitby-Strevens, Colin, "High-Performance Ada Using
Transputers." Defense Computing, September-October 1988, pp. 45-49.

5. Bassman, Michell J. and Converse, Robert A., "Ada for System Upgrades."
Signal- April 1988, pp. 79-87.

6. Berard, Edward V., and Crafts, Ralph E., "Ada Wars II, Management Is
Key To Winning." Defense Science & Electronics- March 1985, pp. 44-52.

7. Boehm, Barry W. Software Enineering Economics. Englewood Cliffs:
Prentice-Hall, Inc., 1981.

8. Booch, Grady, "Ada Scores in the International Market." Defense Comput-
j, September-October 1988, pp. 19-24.

9. Canan, James W., "The Software Crisis." Air Force Magazine, May 1986,
pp. 46-52.

10. Castor, Virginia L., "Dramatic Progress." Defense Science & Electronics
March 1986, pp. 53-56.

11. Castor, Virginia L., and Preston, David, " Programmers Produce More
With Ada." Defense Electronics, June 1987, pp.165-172.

12. Dangerfield, Joseph, Defense Science & Electronics, Interview, December
1986, pp 30-39.

13. Electronic Systems Division Technical Report 86-282, Program Office
Guide to Ada Edition I. Hanscom AFB: Department of the Air Force, Septem-
ber 17, 1986.

70

14. Fostel, Gary, "Just Another Programming Language?" Communications
of the ACM, April 1987, pp. 280-281.

15. "General Dynamics Explores Ada In Extensive Flight Test Program."
Aviation Week & Space Technology March 28, 1988, pp. 73-75.

16. Gerhardt, Mark, "Don't Blame Ada." Defense Science & Electronics,
August 1987, pp. 53-68.

17. Gray, Lewis, "Pointer to a Point." Communications of the ACM, June
1987, p. 474.

18. Gumble, Bruce, "Getting to Know Ada." Defense Computing, September-
October 1988, pp. 32-37.

19. Hall, Major Marilon D., USAF, General Purpose Computers Embedded in
Systems, Air Command and Staff College Research Report No. 0885-79, Air
University, ATC, Maxwell AFB AL, May 1979.

20. Healy, Kathleen, "Name, Rank and Computer Log-On." Forbes, April 20,
1987, pp. 87-88.

21. Hughes, David, "Next-Generation Defense Programs Will Increase Use of
Ada Language." Aviation Week & Space Technology, March 28, 1988, pp. 60-
61.

22. "IBM Forges Links to Ada Vendors To Enhance Role in Aerospace Mar-
ket." Aviation Week & Space Technology, March 28, 1988, pp. 67-69.

23. Johnson, Philip I. The Ada® Primer. New York: McGraw-Hill, 1985.

24. Klein, Daniel, "A buyer's Guide to Ada Procurement." Defense Electron-
ics, January 1985, pp. 10 1-112.

25. Lieblein, Edward, "The Department of Defense Software Initiative - A
Status Report." Communications for the ACM, August 1986, pp. 734-744.

26. Litke, John D. and Benedict, Powell A., "A Reusable Ada Library." De-
fense Computing, September-October 1988, pp. 50-53.

27. Lorenz, Susan, "Ada Shock: A Computer Cultural Transition." Signal,
May 1987, pp. 147-156.

28. Nordwall, Bruce D., "Government Agencies Promote Business, Industry

71

Access to Ada." Aviation Week & Space Technology November 16, 1987, pp.
91-93.

29. Marlow, William, "There's More to Puzzle." Defense Science & Electron-
ij, March 1986, pp. 38-39.

30. Marshall, Charles, "Ada and Hoppers - A review of MILCOMP'87." Asian
Defence, December 1987, pp. 76-81.

31. Miller. Bill, "Ada Powers the Hellfire Missile Program." Defense Comput-
jag, September-October 1988, pp. 43-44.

32. Myers, Edith D., "What the Countess Didn't Count On." ,amation,
February 1, 1987, pp. 32-36.

33. Office of the Under Secretary of Defense for Acquisition. "Report of the
Defense Science Board Task Force on MILITARY SOFTWARE." Washington,
D.C., September 1987.

34. Parrish, Liz, "Running in Real Time: A Problem for Ada." D fen m
Lting, September-October 1988, pp. 38-40.

35. Parris, Scott W. and Olsen, Eric, "The Economics of Ada." D
ence February 1988, pp. 41-43.

36. Pinter, Major Michael W., USAF, Computers in Weapons Systems: A
Look at the F-15, Air Command and Staff College Research Report No. 88-
2135, Air University, ATC, Maxwell AFB AL, April 1988.

37. Price, David. Introduction to Ada. Englewood Cliffs: Prentice-Hall, Inc.,
1984.

38. Roske, Tim; Chew, Mark A.; and Pope, Gregory M., "Ada Goes Opera-
tional." Signal, April 1988, pp. 31-37.

39. Roy, Daniel M., and Jaworski, Allan, "Birth of a Programming Lan-
guage." Aerospace America, July 1988, pp. 10-14.

40. Sammet, Jean E., "Why Ada® is Not Just Another Prog amming Lan-
guage." Communications for the ACM, August 1986, pp. 722-732.

41. Scott, William B., "Air Force/Navy Test Prove Viability of Ada Use in
Flight Critical Systems." Aviation Week & Space Technoloy, August 29,
1988, p. 16.

72

42. Shumate, Kenneth C. Understanding Ada. New York: Harper & Row,

1984.

43. "Software." Aerospace America, December 1987, p. 43.

44. Stringfellow, Stan and Sherman, Bruce, "Achieving Ada Code Portabil-
ity." Defense Science & Electronics October 1986, pp. 33-41.

45. Suydam, Bill, "AJPO Transfer Draws Mixed Reviews." Defense Comput-
jg September-October 1988, pp. 13-16.

46. Thall, Richard M., and Simpson, Richard T., "Software Systems Develop-
ment With the Ada Language System." Defense Systems Review, January
1985, pp. 40-43.

47. Torrance, Ca. Reifer Consultants Inc. Donald J. Reifer, "Ada's Impact: A
Quantitative Assessment," September 10, 1987.

48. Voelcker, John, "Ada: from promise to practice?" IEEE Spectrum, April
1987, pp. 44-49.

49. Wackwitz, Ronald C., "Ada Alternatives." Dna±ion, September 1,
1984, p. 15.

50. Washington, D.C. Department of Defense. Office of the Under Secretary
of Defense. Ada Joint Program Office. "Ada® Program," April 1986.

51. Washington, D.C. Department of Defense. Office of the Under Secretary
of Defense. Colonel Joseph S. Green, "Breaking Barriers."

52. Washington, D.C. Department of Defense. Office of the Under Secretary
of Defense. Dr. George P. Millburn, "Department of Defense Statement on the
Science and Technology Program," March 1988.

53. Washington, D.C. Department of Defense. Office of the Under Secretary
of Defense. Virginia L. Castor, "Ada in U.S. Industry," May 19, 1988.

54. Washington, D.C. Department of The Air Force. HQ USAF." Ada Matur
ity and Implementation," November 1988.

55. Washington, D.C. Department of The Air Force. Office of the Special
Assistant for Reliability and Maintainability. Major Sue Hermanson, "Evalu-
ation of SAF/AADO Talking Paper on Standard Systems Programming,"

73

August 1988.

56. Wolfe, Alexander, "New Products Keep Ada Rolling." E le i, Decem-

ber 2, 1985, p. 20.

57. Wolfe, Alexander, "The Pentagon Unveils Aid for Ada." Eletronic,

November 27, 1986, p. 31.

58. Young, Stephen J. An Introduction to Ada. West Sussex: Ellis Horwood

Limited, 1983.

74

